Simulations On Pair Creation In Collision Of γ-Beams Produced With High Intensity Lasers

OLIVER JANSEN, Institute for Fusion Sciences, University of Texas in Austin, XAVIER RIBEYRE, EMMANUEL D’HUMIERES, SOPHIE JAQUIER, VLADIMIR TIKHONCHUK, Univ. Bordeaux/CNRS/CEA, Centre Lasers Intenses et Applications — Direct production of electron-positron pairs in two photon collisions, the Breit-Wheeler process, is one of the most basic processes in the universe[1]. However, this process has never been directly observed in the laboratory due to the lack of high intensity γ sources[2]. For a feasibility study and for the optimisation of experimental set-ups[3] we developed a high-performance tree-code. Different possible set-ups with MeV photon sources were discussed and compared using collision detection for huge number of particles in a quantum-electrodynastic regime. For this we implemented bounding volume hierarchies in a tree-like code structure. We applied this code on the question whether the Texas Petawatt laser[5] could produce a significant number of pairs within the framework of the NSF project National Science Foundation under Grant No. 1632777.