Overview of High-k Scattering Diagnostics on NSTX and NSTX-U

Y. REN, PPPL, E. MAZZUCATO, Retired, D.R. SMITH, UW-Madison, R. BARCHFIELD, C.W. DOMIER, E.R. SCOTT, N.C. LUHMANN JR., UC-Davis, R. KAITA, R. ELLIS, PPPL, K.C. LEE, NFRI (Korea) — Electron-gyro scale turbulence, e.g. driven by the Electron Temperature Gradient (ETG), has been proposed as a potential candidate for driving anomalous electron thermal transport, a major problem for magnetic confinement fusion. NSTX and NSTX-U provide a unique laboratory for studying electron-scale turbulence and its relation to electron thermal transport due to their low toroidal field, high plasma beta, low aspect ratio and large ExB flow shear. Electron-gyro scale turbulence has been successfully measured in NSTX using a unique high-k, microwave scattering system, providing the first direct evidence of ETG turbulence in STs and detailed studies of parametric dependence of electron-scale turbulence. However, the high-k, microwave scattering system could not capture the predicted ETG spectral peak. Thus a new high-k, FIR scattering system is being implemented for NSTX-U. We will present an overview of the scattering systems on NSTX and NSTX-U, including physics designs, capabilities and recent physics results. We will also discuss methods to achieve radially localized scattering measurements.

The work is supported by DOE

Yang Ren
Princeton Plasma Phys Lab

Date submitted: 13 Jul 2017

Electronic form version 1.4