Additions and improvements to the high energy density physics capabilities in the FLASH code

D. LAMB, A. BOGALE, S. FEISTER, N. FLOCKE, C. GRAZIANI, B. KHIAR, J. LAUNE, P. TZEFERACOS, C. WALKER, K. WEIDE, Flash Center for Computational Physics, University of Chicago — 
FLASH is an open-source, finite-volume Eulerian, spatially-adaptive radiation magnetohydrodynamics code that has the capabilities to treat a broad range of physical processes. FLASH performs well on a wide range of computer architectures, and has a broad user base. Extensive high energy density physics (HEDP) capabilities exist in FLASH, which make it a powerful open toolset for the academic HEDP community. We summarize these capabilities, emphasizing recent additions and improvements. We describe several non-ideal MHD capabilities that are being added to FLASH, including the Hall and Nernst effects, implicit resistivity, and a circuit model, which will allow modeling of Z-pinch experiments. We showcase the ability of FLASH to simulate Thomson scattering polarimetry, which measures Faraday due to the presence of magnetic fields, as well as proton radiography, proton self-emission, and Thomson scattering diagnostics. Finally, we describe several collaborations with the academic HEDP community in which FLASH simulations were used to design and interpret HEDP experiments.

This work was supported in part at U. Chicago by DOE NNSA ASC through the Argonne Institute for Computing in Science under FWP 57789; DOE NNSA under NLUF grant DE-NA0002724; DOE SC OFES grant DE-SC0016566; and NSF grant PHY-1619573.

Don Lamb
University of Chicago

Date submitted: 13 Sep 2017

Electronic form version 1.4