Scenario development toward high beta steady-state operation at KSTAR

1, National Fusion Research Institute, KSTAR TEAM — Solving issues for high-beta long-pulse operation is one of the essential topics for superconducting tokamaks and sustainment of a fully non-inductive H-mode discharge with high performance is successfully demonstrated up to record-long ~70 seconds at KSTAR. Typical plasma parameters are 0.4MA(I_p), max 5MW (NBI+ECH), \(\beta_p \approx 3 \), \(f_{BS} \approx 0.5 \), \(H_{98} \approx 1.3 \) and in a wide range of \(q_{95} = 6 \sim 12 \). Though an internal transport barrier is not identified yet, the developed scenario has many features in common with the so called high \(\beta_p \) discharge at DIII-D. The thermal confinement is sensitive on the deposition layer of the central ECH heating ~1MW and it correlates with MHD activities in the range of TAE frequency (100~200kHz) suggesting strong interaction TAE with fast ion transport. Based on the transport/stability analysis on the present discharge, improved performance is also estimated with higher NBI+ECH heating power envisaged in near future.

1Ulsan National Institute of Science and Technology

S. W. Yoon
National Fusion Research Institute

Date submitted: 24 Aug 2017
Electronic form version 1.4