An Illustrative Guide to the Minerva Framework

ERIK FLOM, Univ of Oklahoma, PATRICK LEONARD, UW-Madison, UDO HOEFF FEL, SEHYUN KWAK, ANDREA PAVONE, JAKOB SVENSSON, MACIEJ KRYCHOWIAK, Max Planck Institute for Plasma Physics, WENDELSTEIN 7-X TEAM COLLABORATION — Modern physics experiments require tracking and modelling data and their associated uncertainties on a large scale, as well as the combined implementation of multiple independent data streams for sophisticated modelling and analysis. The Minerva Framework offers a centralized, user-friendly method of large-scale physics modelling and scientific inference. Currently used by teams at multiple large-scale fusion experiments including the Joint European Torus (JET) and Wendelstein 7-X (W7-X), the Minerva framework provides a forward-model friendly architecture for developing and implementing models for large-scale experiments. One aspect of the framework involves so-called data sources, which are nodes in the graphical model. These nodes are supplied with engineering and physics parameters. When end-user level code calls a node, it is checked network-wide against its dependent nodes for changes since its last implementation and returns version-specific data. Here, a filterscope data node is used as an illustrative example of the Minerva Framework’s data management structure and its further application to Bayesian modelling of complex systems.

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053.

Erik Flom
Univ of Oklahoma

Date submitted: 18 Jul 2017