Effects of equation of state, transport, and initial conditions on plasma liner formation and implosion from hypervelocity jets

KEVIN SCHILLO, JASON CASSIBRY, Univ of Alabama - Huntsville, ROMAN SAMULYAK, Stony Brook University, SAMUEL LANGENDORF, SCOTT HSU, Los Alamos National Laboratory, PLX-ALPHA TEAM — The PLX-α project is studying plasma liner formation and implosion by merging a spherical array of plasma jets as a standoff driver for magneto-inertial fusion (MIF). A three-dimensional smoothed particle hydrodynamics (SPFMax) code is used to conduct simulations of merging of discrete plasma jets to form a plasma liner and the subsequent implosion of that liner. Peak ram pressure, Mach number, and uniformity of the liner are presented as a function of initial jet properties and assumptions about transport physics. The initial conditions include the number of jets, density, temperature, and implosion velocity. Solid-angle-averaged and standard deviation of liner ram pressure and Mach number reveal variations during liner formation and implosion. Spherical-harmonic mode-number analysis of spherical slices of ram pressure at various radii and times provide a quantitative means to assess the evolution of liner non-uniformity. Comparisons are made with select and equivalent cases of a uniform, imploding liner. Simulations of 6 and 7 jets are provided for select cases to support near-term experiments on PLX-α and will include synthetic spectra and line-integrated densities.

Kevin Schillo
Univ of Alabama - Huntsville

Date submitted: 16 Jul 2017

Electronic form version 1.4