Global 3D Braginskii-based edge simulation of an L-H transition

BEN ZHU, MANAURA FRANCISQUEZ, BARRETT ROGERS, Dartmouth Coll

— We present a milli-seconds long pre L-H transition simulation with the global edge turbulence code GDB. This study was carried out in a simple shifted circular flux surfaces magnetic configuration with IWL Alcator C-Mod parameters. The simulation domain is toroidally and poloidally global and spans $3\ cm$ of the closed-flux region and $2\ cm$ of the scrape-off layer ($3\ cm<r-a<2\ cm$). The plasma is heated in the core region ($r-a<-3\ cm$) and sourced near the separatrix ($r\approx a$). Several interesting features are exhibited in this simulation that concur with experiments, including enhanced $E\times B$ shear flow, suppressed turbulence, inward particle pinch and formation of pedestal via plasma heating. Detailed results and further analysis will be presented in the meeting.

1This work was supported by DOE-SC-0010508. This research used resources of the National Energy Research Scientific Computing Center.

Ben Zhu
Dartmouth Coll

Date submitted: 17 Jul 2017