Please place posters from first authors U. Shumlak, R.P. Golingo, E.L. Claveau, A.D. Stepanov, T.R. Weber, and E.G. Forbes together in the following order:
1. U. Shumlak
2. R.P. Golingo
3. E.L. Claveau
4. A.D. Stepanov
5. T.R. Weber
6. E.G. Forbes

Abstract Submitted
for the DPP17 Meeting of
The American Physical Society

High resolution digital holographic interferometry on the FuZE Fusion Z-Pinch Experiment1 T.R. WEBER, U. SHUMLAK, B.A. NELSON, E.L. CLAVEAU, E.G. FORBES, R.P. GOLINGO, A.D. STEPANOV, Y. ZHANG, University of Washington, H.S. MCLEAN, D.P. HIGGINSON, A.E. SCHMIDT, K.K. TUMMEL, Lawrence Livermore National Laboratory, UNIVERSITY OF WASHINGTON COLLABORATION, LAWRENCE LIVERMORE NATIONAL LABORATORY COLLABORATION — The recently constructed sheared flow stabilized (SFS) Z-pinch experiment, the Fusion Z-Pinch Experiment (FuZE), is operational. The experiment is investigating scaling of SFS Z-pinch plasmas towards fusion conditions. Cylindrical plasmas are compressed to small radii (\(< 1 \text{ cm}\)), and high densities (\(> 10^{18}/\text{cm}^3\)) as plasma current is increased. Diagnosing the size, density and internal structure of these small radii cylindrical plasmas require a high spatial resolution plasma density diagnostic. Motivated by this, a holographic interferometer with 10 micron spatial resolution has recently been installed on FuZE [1]. A Nd:YAG laser is used with a digital camera to produce holograms from the plasma assembly region. Digital holograms are numerically reconstructed to obtain chord-integrated electron density of compressed plasma, with fine spatial resolution. Assuming cylindrical symmetry in the assembly region, plasma radial density profiles are reconstructed from these chord-integrated electron density data. Both chord-integrated and radial plasma density data from FuZE are presented. [1] M.P. Ross U. Shumlak, RSI 87, 103502 (2016)

1This work is supported by an award from US ARPA-E.

Tobin Weber
University of Washington

Date submitted: 14 Jul 2017