FLARE: A New User Facility for Laboratory Studies of Multiple-Scale Physics of Magnetic Reconnection and Related Phenomena in Helio- and Astrophysics

H. JI, A. BHATTACHARJEE, A. GOODMAN, S. PRAGER, Princeton U., W. DAUGHTON, LANL, R. CUTLER, W. FOX, F. HOFFMANN, M. KALISH, T. KOZUB, J. JARA-ALMONTE, C. MYERS, Y. REN, P. SLOBODA, M. YAMADA, J. YOO, PPPL, S.D. BALE, UC-Berkeley, T. CARTER, S. DORFMAN, UCLA, J. DRAKE, U. Maryland, J. EGEDAL, J. SARFF, J. WALLACE, U. Wisconsin — The FLARE device (Facility for Laboratory Reconnection Experiments; flare.pppl.gov) is a new laboratory experiment under construction at Princeton with first plasmas expected in the fall of 2017, based on the design of Magnetic Reconnection Experiment (MRX; mrx.pppl.gov) with much extended parameter ranges. Its main objective is to provide an experimental platform for the studies of magnetic reconnection and related phenomena in the multiple X-line regimes directly relevant to space, solar, astrophysical and fusion plasmas. The main diagnostics is an extensive set of magnetic probe arrays, simultaneously covering multiple scales from local electron scales (∼2 mm), to intermediate ion scales (∼10 cm), and global MHD scales (∼1 m). Specific example space physics topics which can be studied on FLARE will be discussed.

Hantao Ji
Princeton University

Date submitted: 14 Jul 2017

Electronic form version 1.4