Near-critical density target experiments for ion acceleration using high-intensity laser pulses1 PETER KORDELL, PAUL CAMPBELL, ANATOLY MAKSIMCHUK, LOUISE WILLINGALE, KARL KRSHELNICK, Univ of Michigan - Ann Arbor — The interaction of a short-duration, relativistic intensity laser pulse with a near-critical density plasma can produce a collisionless electrostatic shock capable of accelerating ions. This effect has already been demonstrated using CO2 laser systems ($\lambda = 10 \mu$m) where the specific plasma density profile enabled the acceleration of quasi-monoenergetic ion beams. We will present our experiments using the T-cubed laser system at the University of Michigan ($\lambda = 1.053 \mu$m, 6J, 400fs). Due to the shorter wavelength, typical of most relativistic intensity laser systems, a higher plasma density and shorter scalelengths are required to achieve the conditions for shock ion acceleration. The target design and characterization as well as preliminary experimental results will be presented.

1This work was supported by the DOE through grant number DE-SC0012327

Peter Kordell
Univ of Michigan - Ann Arbor

Date submitted: 14 Jul 2017