Understanding Turbulence using Active and Passive Multipoint Measurements in Laboratory Magnetospheres

M.E. MAUEL, M.C. ABLER, T.M. QIAN, A. SAPERSTEIN, J.R. YAN, Columbia University — In a laboratory magnetosphere, plasma is confined by a strong dipole magnet, and interchange and entropy mode turbulence can be studied and controlled in near steady-state conditions. Turbulence is dominated by long wavelength modes exhibiting chaotic dynamics, intermittency, and an inverse spectral cascade. Here, we summarize recent results: (i) high-resolution measurement of the frequency-wavenumber power spectrum using Capon’s “maximum likelihood method”, and (ii) direct measurement of the nonlinear coupling of interchange/entropy modes in a turbulent plasma through driven current injection at multiple locations and frequencies. These observations well-characterize plasma turbulence over a broad band of wavelengths and frequencies. Finally, we also discuss the application of these techniques to space-based experiments and observations aimed to reveal the nature of heliospheric and magnetospheric plasma turbulence.

1Supported by NSF-DOE Partnership in Plasma Science Grant DE-FG02-00ER54585.
4Qian, et al., Undergraduate Poster Session; This meeting.
5Abler, et al., Poster Category 1.8; This meeting.