Abstract Submitted for the DPP17 Meeting of The American Physical Society

Simulating tokamak PFC performance using simultaneous dual beam particle loading with pulsed heat loading¹ GREGORY SINCLAIR, SEAN GONDERMAN², JITENDRA TRIPATHI, TYLER RAY, AHMED HAS-SANEIN, Purdue University — The performance of plasma facing components (PFCs) in a fusion device are expected to change due to high flux particle loading during operation. Tungsten (W) is a promising PFC candidate material, due to its high melting point, high thermal conductivity, and low tritium retention. However, ion irradiation of D and He have each shown to diminish the thermal strength of W. This work investigates the synergistic effect between ion species, using dual beam irradiation, on the thermal response of W during ELM-like pulsed heat loading. Experiments studied three different loading conditions: laser, laser + He⁺, and laser + He⁺ + D⁺. 100 eV He⁺ and D⁺ exposures used a flux of 3.0-3.5 x 10^{20} $m^{-2} s^{-1}$. ELM-like loading was applied using a pulsed Nd:YAG laser at an energy density of 0.38-1.51 MJ m⁻² (3600 1 ms pulses at 1 Hz). SEM imaging revealed that laser + He⁺ loading at 0.76 MJ m^{-2} caused surface melting, inhibiting fuzz formation. Increasing the laser fluence decreased grain size and increased surface pore density. Thermally-enhanced migration of trapped gases appear to reflect resultant molten morphology.

¹This work was supported by the National Science Foundation PIRE project. ²Present address: General Atomics, San Diego, CA 92186, USA

> Gregory Sinclair Purdue University

Date submitted: 14 Jul 2017

Electronic form version 1.4