Abstract Submitted

for the DPP17 Meeting of

The American Physical Society

Strong-field QED processes in laser and plasma environments

SEBASTIAN MEUREN¹, CHRISTOPH H. KEITEL, ANTONINO DI PIAZZA, Max Planck Institute for Nuclear Physics, Heidelberg, Germany — Highly relativistic particles can probe the QED critical field if they propagate through strong electromagnetic fields, e.g., in a plasma environment [1]. In this regime nonlinear and nonperturbative QED effects become important and thus a complicated interplay between strong-field QED and plasma physics takes place. To render numerical calculations in this regime feasible the so-called QED-PIC approach has been developed [2], which is based on the semiclassical approximation. Recently, we have investigated the validity of the semiclassical approximation by examining the nonlinear Breit-Wheeler process (electron-positron photoproduction) inside a plane-wave laser field in detail [3]. In the talk the difference between classical and quantum absorption of laser energy, the importance of interference effects and the possibility of recollision processes [4] will be discussed.

¹Now at Princeton University, Princeton, NJ

Sebastian Meuren
Max Planck Institute for Nuclear Physics, Heidelberg, Germany

Date submitted: 14 Jul 2017

Electronic form version 1.4