Abstract Submitted for the DPP17 Meeting of The American Physical Society

Impact of Cross-field Drifts on Detachment in DIII- D^1 A.E. JAERVINEN, S.L. ALLEN, A.G. MCLEAN, T.D. ROGNLIEN, C.M. SAMUELL, G.D. PORTER, LLNL, M. GROTH, Aalto, D.N. HILL, A.W. LEONARD, GA -Simulations of DIII-D plasmas have revealed the strong role of $\mathbf{E} \times \mathbf{B}$ -drifts in the low field side (LFS) detachment structure. High confinement modes (H-mode) with the ∇B -drift towards the X-point (fwd B_T) enter detachment at 20% higher upstream density, $n_{e,sep}$, than plasmas with the ∇B -drift away from the X-point (rev B_T). In contrast, low confinement modes (L-mode) enter detachment at 10% lower $n_{e,sep}$ in fwd B_T . Despite this, both L- and H-modes detached plasmas show strong target flux, J_{SAT} , reduction with increasing $n_{e,sep}$ in fwd B_T , while only a modest reduction occurs in rev B_T . In fwd B_T H-mode, a step-wise transition from attached to strongly detached conditions is observed with increasing ne, sep. UEDGE simulations indicate that the strong poloidal $\mathbf{E} \times \mathbf{B}$ -drift in the private flux region in H-mode drives the difference for the detachment onset relative to L-mode. In fwd B_T , the dependence of this poloidal $\mathbf{E} \times \mathbf{B}$ -drift on the divertor conditions can reinforce the plasma into either attached or strongly detached state. In rev B_T , radial $\mathbf{E} \times \mathbf{B}$ -drift depletes strike-line \mathbf{n}_e , limiting the degree of detachment.

¹Work supported by the US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, and LLNL LDRD project 17-ERD-020.

A.E. Jaervinen LLNL

Date submitted: 14 Jul 2017

Electronic form version 1.4