The Effect of Interchanging the Polarity of the Dense Plasma Focus on Neutron Yield1 SHENG JIANG, DREW HIGGINSON, ANTHONY LINK, ANDREA SCHMIDT, Lawrence Livermore National Lab — The dense plasma focus (DPF) Z-pinch devices can serve as portable neutron sources when deuterium is used as the filling gas. DPF devices are normally operated with the inner electrode as the anode. It has been found that interchanging the polarity of the electrodes can cause orders of magnitude decrease in the neutron yield1. Here we use the particle-in-cell (PIC) code LSP2,3 to model a DPF with both polarities. We have found the difference in the shape of the sheath, the voltage and current traces, and the electric and magnetic fields in the pinch region due to different polarities. A detailed comparison will be presented. 1. G. Decker, W. Kies and G. Pross, Phys. Lett. 89A, 393 (1982) 2. D. R. Welch, D. V. Rose, R. E. Clark, T. C. Genoni, and T. P. Hughes, Comput. Phys. Commun. 164, 183 (2004) 3. A. Schmidt, V. Tang, D. Welch, Phys. Rev. Lett. 109, 205003 (2012)

1Prepared by LLNL under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (15-ERD-034) at LLNL. Computing support for this work came from the LLNL Institutional Computing Grand Challenge program.

Sheng Jiang
Lawrence Livermore National Lab

Date submitted: 14 Jul 2017

Electronic form version 1.4