Plasma Response to n=3 Magnetic Perturbations in Noninductive Hybrid Plasmas in the DIII-D Tokamak

R. NAZIKIAN, A. BORTOLON, N. FERRARO, N. LOGAN, PPPL, C.C. PETTY, C. PAZ-SOLDAN, General Atomics, T.L. RHODES, UCLA, R. MOYER, D. ORLOV, UCSD, F. TURCO, Columbia University — 3D magnetic perturbations (MPs) are effective in suppressing Type-I and Grassy ELMs in DIII-D noninductive Hybrid plasmas over a wide range of q95 (5.2-7.5) and beam torque (6 -0.2 Nm) with minimal confinement degradation ($\beta_N \approx 3.2, H_{98} \approx 1.2$). Recent experiments elucidate the role of the plasma response to n= 3 MPs that is responsible for the effectiveness of ELM suppression in this regime. Scans of the n= 3 applied spectrum were performed using the new ASIPP Super Supplies and by comparing the plasma response to even/odd parity and single row I-coil configurations. Even parity is poor at driving plasma response and for ELM suppression, consistent with model predictions. All other coil configurations showed strong amplification by the plasma, $\approx 4x$ larger than for the $\beta_N \approx 1.8$ ITER inductive scenario, consistent with predictions from linear MHD modeling. These results reveal the beneficial role of high beta and elevated q95 for the suppression of ELMs by MPs in Advanced Tokamak scenarios.

1Work supported under USDOE Agreement DE-AC02-09CH11466, DE-FC02-04ER54698, DE-FG02-08ER54984.