Abstract Submitted for the DPP17 Meeting of The American Physical Society

Neutron beams driven by the Texas Petawatt laser¹ JUAN C. FER-NANDEZ, D.C. GAUTIER, A. FAVALLI, S.A. JUNGHANS, M.A. SANTIAGO, Los Alamos National Lab., G. DYER, E. MCCARY, R. ROYCROFT, X. JIAO, B. BOWERS, G. TIWARI, L. LISI, B.M. HEGELICH, Univ. of Texas, Austin — Intense laser-driven ion beams produced in the relativistically-induced transparency regime have been used to generate intense γ -ray and neutron beams [1]. For neutrons, a laser-driven deuteron beam is directed at a Be disk "converter", where deuterons split producing mainly forward-directed neutrons. The aforementioned experiments have been done at the Trident laser using a 0.5 ps laser pulse of 1 μ m wavelength focused up to 10^{21} W/cm² onto nanofoils of deuterated-plastic (CD_x where x=1-2), making 1×10^{10} neutrons/sr at ~ MeV average energies [2]. Here we report on the first experiments to explore the same regime at the Texas Petawatt (TPW) laser facility. With one plasma mirror, TPW delivers high-contrast laser pulses as short as 0.15 ps at intensities up to 2×10^{21} W/cm². CD and Al/CD multilayer targets of thickness in the range of 50 - 750 nm have been used. This setup has delivered up to 5×10^9 neutrons/sr. The dependence of neutron yield on target composition and thickness, and on laser pulse length is presented and discussed. [1] J.C. Fernández et al., Laser-plasmas in the relativistictransparency regime: Science and applications, Phys. of Plasmas 24, 056702 (2017) [2] M. Roth et al., Bright Laser-Driven Neutron Source Based on the Relativistic Transparency of Solids, Phys.Rev. Lett. **110**, 044802 (2013)

¹This work is sponsored by the NNSA of the USDOE.

Juan C. Fernandez Los Alamos National Lab.

Date submitted: 18 Jul 2017

Electronic form version 1.4