Current Density Profile Evolution with Lower Hybrid Current Drive on EAST

D.L. BROWER, UCLA, H. LIAN, W.M. LI, H.Q. LIU, ASIPP, W.X. DING, UCLA, Y.F. WANG, Y.Q. CHU, Y.X. JIE, ASIPP — Weak or reversed magnetic shear plasma scenarios with internal transport barriers (ITB) are considered to be prime candidates for steady-state (or long pulse discharge) high-confinement plasma operation. This can be achieved using an optimized q profile by controlling the heating and current drive systems in tokamaks. The eleven chord POlarimeter-INTeferometer (POINT) system on EAST can provide internal magnetic field measurements with fast time response (up to 1 MHz) thereby allowing realtime current and q profile monitoring using fast equilibrium reconstruction. High beta_N (1.8-2), H98 =1.1 plasmas with good confinement are achieved with Neutral Beam Injection (NBI) and Lower Hybrid Wave (LHW). The central q profile is shown to be flat by POINT measurements. A new error correction method to decrease the stray light error for Faraday effect measurement is applied and stray light contamination is reduced to 0.5-1 degs. from 2-5 degs. Further efforts to reduce stray light are underway and essential for realtime q profile measurement required to control and extend high-performance scenarios developed on EAST.

1Work supported by US DOE through grants DE-FG02-01ER54615 and DC-SC0010469.