Abstract Submitted for the DPP19 Meeting of The American Physical Society

Assessment of Impurity Content and Radiated Power in LHI discharges on the Pegasus ST¹ C. RODRIGUEZ SANCHEZ, G.M. BODNER, R.J. FONCK, M.D. NORNBERG, C. PIERREN, University of Wisconsin-Madison -Local Helicity Injection (LHI) is routinely used in the PEGASUS ST to produce high-performance discharges with $I_p \leq 0.24$ MA, $n_e \approx 10^{19}$ m⁻³ and $T_e \approx 100$ eV. Recent experiments show that the impedance of the plasma is independent of the helicity drive as I_p scales linearly with V_{LHI} . One possible explanation of this behavior would be that Z_{eff} and the plasma resistivity increases with I_p . To examine this possibility an assessment of radiated power and impurity concentration is being done in PEGASUS using a tangential bolometer array, VB spectroscopy and a SPRED VUV spectrometer. Discrete line radiation from N and O are at least $10 \times$ higher during LHI than Ohmic. A broadband spectrum at $\lambda \leq 35$ nm is observed during LHI but absent during Ohmic discharges. Radiated power increases rapidly with V_{LHI} , suggesting an increase in Z_{eff} as I_p increases. Initial observations suggest Bremsstrahlung radiation measurements are infeasible during LHI but may be measured during an Ohmic phase in an LHI-Ohmic handoff scenario. To quantify estimates of impurity content, a new multichannel diode bolometer array with full coverage across the plasma is being developed.

¹Work supported by US DOE grants DE-FG02-96ER54375 and DE-SC0019008.

Michael Bongard University of Wisconsin-Madison

Date submitted: 28 Jun 2019

Electronic form version 1.4