Assessment of Impurity Content and Radiated Power in LHI discharges on the Pegasus ST

C. RODRIGUEZ SANCHEZ, G.M. BODNER, R.J. FONCK, M.D. NORNBERG, C. PIERREN, University of Wisconsin-Madison — Local Helicity Injection (LHI) is routinely used in the PEGASUS ST to produce high-performance discharges with $I_p \leq 0.24$ MA, $n_e \approx 10^{19}$ m$^{-3}$ and $T_e \approx 100$ eV. Recent experiments show that the impedance of the plasma is independent of the helicity drive as $I_p$ scales linearly with $V_{LHI}$. One possible explanation of this behavior would be that $Z_{\text{eff}}$ and the plasma resistivity increases with $I_p$. To examine this possibility an assessment of radiated power and impurity concentration is being done in PEGASUS using a tangential bolometer array, VB spectroscopy and a SPRED VUV spectrometer. Discrete line radiation from N and O are at least 10× higher during LHI than Ohmic. A broadband spectrum at $\lambda \leq 35$ nm is observed during LHI but absent during Ohmic discharges. Radiated power increases rapidly with $V_{LHI}$, suggesting an increase in $Z_{\text{eff}}$ as $I_p$ increases. Initial observations suggest Bremsstrahlung radiation measurements are infeasible during LHI but may be measured during an Ohmic phase in an LHI-Ohmic handoff scenario. To quantify estimates of impurity content, a new multichannel diode bolometer array with full coverage across the plasma is being developed.

1Work supported by US DOE grants DE-FG02-96ER54375 and DE-SC0019008.

Michael Bongard
University of Wisconsin-Madison

Date submitted: 28 Jun 2019

Electronic form version 1.4