Abstract Submitted for the DPP19 Meeting of The American Physical Society

Parameter of Merit for Experiments Aiming at DT Ignition D. BORGOGNO, ISC-CNR and Politecnico di Torino (Italy), B. COPPI, MIT — Given the importance of reaching ignition conditions in magnetically confined plasmas [1] it is appropriate to identify parameters of merits for the design of future machines. One considered for the Ignitor experiment is $P_{mI} = B_p^2 I_T$, where I_T is the toroidal plasma current and B_p is the average poloidal field, aiming for about 100 (T2 MA). The starting point for $T_e \simeq T_i$, is $\Re \simeq \alpha_T n T D_{\perp}^{th}/a^2$ where \Re is the D-T reactivity, $\Re \propto \alpha_F n^2 T^2$ and a is the mean plasma radius. Assuming $D_{\perp}^{th} \propto \alpha_D/n$ and $n \propto \alpha_L J$, where J is the current density, $\alpha_F n^2 T^2 \simeq \alpha_T n T \alpha_D/(Ja^2\alpha_L)$ and, for $nT \propto \alpha_c B_p^2$ we obtain $B_p^2 I_p \propto (\alpha_D \alpha_T)/(\alpha_F \alpha_c \alpha_L)$. The introduced α -parameters involve weaker dependences on plasma and machine characteristics than those given already. [1] B. Coppi and the Ignitor Team, Nucl. Fus. 55, 053001 (2015).

¹Sponsored in part by the U.S. Department of Energy and by C.N.R of Italy.

Bruno Coppi Massachusetts Institute of Technology

Date submitted: 28 Jun 2019 Electronic form version 1.4