Internal measurement of pedestal-localized broadband magnetic fluctuations in ELMy H-mode plasmas in DIII-D

JIE CHEN, University of California, Los Angeles

In DIII-D ELMy H-mode plasmas, pedestal-localized broadband magnetic fluctuations have been directly observed internally, for the first time, using a new Faraday-effect polarimeter diagnostic to identify their role in pedestal transport. The broadband magnetic fluctuations have many characteristics indicative of micro-tearing-modes (MTM): (a) poloidal wave number $k_\theta \approx 0.3$/cm, frequencies ranging from $f=100$-500 kHz with peak at 250 kHz, and propagation in the electron diamagnetic direction in the plasma frame, as expected for unstable MTM from linear GYRO calculation at the pedestal; (b) radial magnetic field amplitude lower bound $|\delta B_r| \approx 25$ Gauss and $|\delta B_r/B| \approx 0.12\%$ ($B=2$ T is total magnetic field) over bandwidth 100-500 kHz, comparable to the saturated MTM amplitude predicted by non-linear theory ($\rho_e/L_{Te} > 0.1\%$ in pedestal); (c) non-monotonic dependence of mode amplitude on collision frequency, peaking at $\nu_{ci}/f \approx 0.4$-2 (ν_{ci} is pedestal top collision frequency), consistent with lowest order MTM theory; (d) poloidally asymmetric spatial distribution with minimum amplitude near mid-plane. Between ELMs, the broadband magnetic fluctuation amplitude correlates with saturation of the pedestal gradients of T_e, n_e and p_e, indicating a role in regulating the pedestal. Based on stochastic field theory, the measured $|\delta B_r|$ can lead to experimentally-relevant electron thermal transport while mode growth has been observed to correlate with decreased pedestal pressure and global stored energy. The observations provide strong evidence that MTM exists in H-mode pedestal and play an important role in pedestal transport. These findings provide critical experimental input for model validation and development of predictive physics understanding of pedestal confinement.

1Work supported by US DOE under DE-FG03-01ER54615 and DE-FC02-04ER54698.