Model-based Linear Quadratic Integral Control Design for q-profile Shaping in EAST1 ZIBO WANG, HEXIANG WANG, EUGENIO SCHUSTER, Lehigh University, YAO HUANG, ZHENGPING LUO, QIPING YUAN, BINGJIA XIAO, Institute of Plasma Physics, Chinese Academy of Sciences, DAVE HUMPHREYS, General Atomics — In order to achieve advanced modes of operation, characterized by confinement improvement and possible steady-state operation, control capabilities for shaping the spatial profile of the toroidal current density, or equivalently the safety factor q or the gradient of the poloidal magnetic flux, are essential. A linear quadratic integral (LQI) control-design approach has been followed in this work to further develop such control capabilities in EAST. The controllers, which have been designed based on a first-principles-driven control-oriented model of the poloidal magnetic flux profile evolution, have the capability of regulating several points of the q profile and its integral properties such as the internal inductance l_i. Moreover, by controlling the plasma current I_p and the powers of both the low frequency (2.45 GHz) and the high-frequency (4.60 GHz) lower hybrid wave sources, the controllers can also regulate β_N. Nonlinear simulations show that the controllers can effectively regulate a combination of $q(0.1), q(0.5), q(0.9), l_i$ and β_N. The proposed control laws have been implemented in the recently developed Profile Control category in the EAST Plasma Control System (PCS) with the ultimate goal of testing them experimentally.

1Supported by the US DOE under DE-SC0010537

Zibo Wang
Lehigh University

Date submitted: 01 Jul 2019

Electronic form version 1.4