Simulation of ion-acoustic waves and their effect on collisions in an ion presheath.1 LUCAS BEVING, SCOTT BAALRUD, University of Iowa, MATTHEW HOPKINS, Sandia National Laboratories, BRETT SCHEINER, University of Iowa — It has been predicted that the ion flow in an ion presheath can excite ion-acoustic waves \cite{1}. However, no direct measurement or simulation has yet been made. If these waves are excited, then previous work predicts that wave-particle interactions would significantly enhance the effective coulomb collision rate \cite{1}. Increased collisionality could explain why ion and electron velocity distribution functions are measured with varying degrees of thermalization near the presheath-sheath boundary \cite{2}. PIC simulations will be used to calculate the power spectrum of density fluctuations to determine if the ion-acoustic waves are driven unstable. The simulations also allow for the quantification of wave-particle effects by calculating time correlations between the distribution fluctuations and the electric-field fluctuations $\langle \delta f \delta E \rangle$. Additionally, the neutral pressure will be varied to turn the instability on or off due to ion-neutral damping. \cite{1} Baalrud S D and Hegna C C 2011 \textit{Plasma Sources Sci. Technol.} \textbf{20} 025013 \cite{2} Yip C, Hershkowitz N and Severn G 2015 \textit{Plasma Sources Sci. Technol.} \textbf{24} 015018

1This work was supported by DOE grant No. DE-SC0016473.