DPP19-2019-000647

Abstract for an Invited Paper for the DPP19 Meeting of the American Physical Society

Impact of Non-Maxwellian Electron Distribution Functions on Crossed-Beam Energy Transfer¹ DAVID TURNBULL, Laboratory for Laser Energetics

Energy transfer between crossed laser beams is an important process in both the direct- and indirect-drive approaches to inertial confinement fusion (ICF), and unreliable predictions in numerous contexts have raised questions as to the validity of models. Typically, those models require state variable inputs (i.e., n_e , T_e , and T_i) that are computed in radiation-hydrodynamic simulations, which assume Maxwellian electron distribution functions (EDF). However, laser plasma heating is predicted to distort the EDF away from Maxwellian². Here, measurements of the complete Thomson scattering spectrum indicate the presence of super-Gaussian EDF's that are consistent with existing theory³. In such plasmas, ion acoustic wave (IAW) frequencies increase monotonically with super-Gaussian exponent⁴. To match experiments that measured power transfer between crossed laser beams mediated by IAW's, accounting for the measured non-Maxwellian EDF is required⁵. This effect is estimated to decrease energy transfer in indirectly-driven hohlraums at the National Ignition Facility by $\approx 27\%$; this will reduce (and may eliminate) the *ad hoc* saturation clamp that has previously been used to match observables like shape, thereby improving the predictive capability of integrated modeling.

¹This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003856.

- ²A. B. Langdon *et al.*, Phys. Rev. Lett. **44**, 575-579 (1980).
- ³J. P. Matte *et al.*, Plas. Phys. Cont. Fus. **30**, 1665 (1988).
- ⁴B. B. Afeyan *et al.*, Phys. Rev. Lett. **80**, 2322-2325 (1998).
- ⁵D. Turnbull *et al.*, in review (2019).