Impact of Non-Maxwellian Electron Distribution Functions on Crossed-Beam Energy Transfer

DAVID TURNBULL, Laboratory for Laser Energetics

Energy transfer between crossed laser beams is an important process in both the direct- and indirect-drive approaches to inertial confinement fusion (ICF), and unreliable predictions in numerous contexts have raised questions as to the validity of models. Typically, those models require state variable inputs (i.e., n_e, T_e, and T_i) that are computed in radiation-hydrodynamic simulations, which assume Maxwellian electron distribution functions (EDF). However, laser plasma heating is predicted to distort the EDF away from Maxwellian2. Here, measurements of the complete Thomson scattering spectrum indicate the presence of super-Gaussian EDF’s that are consistent with existing theory3. In such plasmas, ion acoustic wave (IAW) frequencies increase monotonically with super-Gaussian exponent4. To match experiments that measured power transfer between crossed laser beams mediated by IAW’s, accounting for the measured non-Maxwellian EDF is required5. This effect is estimated to decrease energy transfer in indirectly-driven hohlraums at the National Ignition Facility by $\approx 27\%$; this will reduce (and may eliminate) the \textit{ad hoc} saturation clamp that has previously been used to match observables like shape, thereby improving the predictive capability of integrated modeling.

1This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003856.

5D. Turnbull \textit{et al.}, in review (2019).