Abstract Submitted for the DPP19 Meeting of The American Physical Society

The effect of species mix and fast-ion distribution on emission of fast magnetosonic waves near the ion cyclotron frequency¹ S. VINCENA, UCLA, WW. HEIDBRINK, UCI, N. CROCKER, UCLA, G. DEGRANDCHAMP, UCI, X. DU, GA, M. KOEPKE, S. NOGAMI, WVU, S. SHARAPOV, CCFE, SX. TANG, UCLA, K. THOME, GA, SKP. TRIPATHI, UCLA, MA. VAN ZEELAND, GA — In the radiation belts, energetic ions drive wave emission both above and below the ion cyclotron frequency ω_{ci} . In a Frontier Science experiment on the DIII-D tokamak, emission of fast magnetosonic waves near ω_{ci} and its harmonics is investigated using systematic scans of species mix, magnetic field, and fast-ion distribution function. For most fast-ion populations, increasing H^+ in a background D^+ plasma increases emission below ω_{ci} but decreases emission above ω_{ci} , while lower magnetic field strength gives stronger emission below ω_{ci} but has relatively little effect above $\omega_{\rm ci}$. Addition of a third species (³He⁺⁺) sometimes introduces an additional emission band below ω_{ci} reminiscent of the three electromagnetic ion cyclotron wave bands of H⁺, He⁺, and O⁺ in space. For higher frequencies ($\omega > \omega_{cH}$) fast magnetosonic waves with spectral peaks at multiples of ω_{cH} have been observed by satellites in the equatorial magnetosphere. Similar spectra at harmonics of $\omega_{\rm ci}$ are observed in magnetically confined fusion plasmas. Comparisons of stability calculations used in both the space and fusion communities will be shown.

¹Work supported by US DOE under DE-FC02-04ER54698

Stephen Vincena California State University, Los Angeles

Date submitted: 03 Jul 2019

Electronic form version 1.4