Abstract Submitted for the DPP19 Meeting of The American Physical Society

The Ideal Evolution Equation and Fast Magnetic Reconnection¹ ALLEN BOOZER, Columbia University — The ideal evolution equation, $\partial \vec{B}/\partial t = \vec{\nabla} \times (\vec{u}_{\perp} \times \vec{B})$, implies magnetic field lines move with a velocity \vec{u}_{\perp} and cannot change their connections. Nevertheless, for an electric field that is arbitrarily close to the ideal form, $\vec{E} + \vec{u}_{\perp} \times \vec{B} = -\vec{\nabla}\Phi$, magnetic connections will in general break on a time scale $\tau \ln R_m$, where $1/\tau \approx |\vec{\nabla}\vec{u}_{\perp}|$ is the Lyapunov exponent for neighboring streamlines of \vec{u}_{\perp} . The magnetic Reynolds number $R_m \equiv |\vec{u}_{\perp} \times \vec{B}|/|\mathcal{E}_{\backslash\rangle}|$, where $\mathcal{E}_{\backslash\rangle}$ is the deviation of the parallel electric field from the ideal form. This mathematical theorem is proven in Phys. Plasmas 26, 042104 (2019) using Lagrangian coordinates, $\partial \vec{x}(\vec{x}_0, t)/\partial t = \vec{u}_{\perp}(\vec{x}, t)$. Though true in two dimensions, the assumption that the part of the magnetic flux that is reconnecting ψ_p must be dissipated by the parallel electric field $\partial \psi_p / \partial t = \int E_{||} d\ell$ is not correct in three. Then, ψ_p can be mixed not destroyed conserving magnetic helicity. Two dimensional theories also effectively exclude exponentiation.

¹Work supported by U.S. Department of Energy awards DE-FG02-95ER54333, DE-FG02-03ER54696, DE- SC0018424, and DE-SC0019479.

Allen Boozer Columbia University

Date submitted: 02 Jul 2019

Electronic form version 1.4