Abstract Submitted for the DPP19 Meeting of The American Physical Society

Inference of Electron Density in the Hot Spot of NIF Compressed Capsules from Krypton Helium- β Stark Line Shapes KW HILL, M BITTER, L GAO, B F KRAUS, P C EFTHIMION, PPPL, M B SCHNEIDER, D B THORN, H CHEN, R L KAUFFMAN, D A LIEDAHL, M J MACDONALD, A G MACPHEE, H D WHITLEY, LLNL, R DORON, E STAMBULCHIK, Y MARON, Weizmann Institute of Science — The dHIRES x-ray spectrometer measures Kr He α and He β spectra from NIF compressed capsules with 10-eV spectral and 30-ps temporal resolution. Theoretical calculations of the Stark-broadened line shape of the He β complex (3 3P_1 , 1P_1 , 1D_2) show monotonic variations with density of the line widths, line energies, and intensity of the 3 3P_1 and 3 1D_2 lines relative to the main, 3 1P_1 peak. Comparison of the measured Kr He β complex line profiles with the theoretical line shapes provides a measure of the time history of the electron density. These comparisons will be shown for four NIF shots with Kr-doped capsules.

¹Work performed under the auspices of the U.S. Department of Energy by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344

> Kenneth Hill Princeton University

Date submitted: 02 Jul 2019 Electronic form version 1.4