Abstract Submitted for the DPP19 Meeting of The American Physical Society

Test Particle Diffusion In Correlated Plasmas¹ FRANCOIS AN-DEREGG, JACOB SARET, C. FRED DRISCOLL, DANIEL. H. DUBIN, University of California, San Diego — Inter-particle correlations have several effects on the dynamical properties of plasmas. The correlation parameter $\Gamma \equiv e^2/aT$ represents the ratio of the nearest neighbor electrostatic energy to the thermal energy. We cool un-neutralized magnesium ion plasmas in a Penning-Malmberg trap, with density $n \approx 10^7 \text{ cm}^{-3}$, the temperature T is controlled over a wide range of 5eV >T $>5 \times 10^{-6} \text{eV}$, resulting in correlation parameters $10^{-5} < \Gamma < 10$. We have measured the perpendicular to parallel collision rate $\nu_{\perp//}$ from the non-correlated to strongly correlated regime, and observe the (Salpeter) enhancement of $\nu_{\perp//}$ up to 10⁹ due to correlations [1]. We have also measured test particle diffusion and heat transport in these plasmas in the absence of correlation ($\Gamma <<1$). Here, we propose to extend these measurements into the moderately correlated regime. In the range of $10^{-3} < \Gamma$ <1, where no experiment or numerical simulation have been done, we will test theory [2] predicting decreasing diffusion coefficient D as T decreases, with transition from $D \propto T^{-1/2}$ to $D \propto T$ and a transition from $D \propto B^{-2}$ to $D \propto B^{-1}$. [1] F. Anderegg et al., PRL, 102, 185001 (2009). [2] T. Ott and M. Bonitz, PRL, 107, 135003 (2011); S.D. Baalrud and J. Daligaut, Phys. Rev. E, 96, 043202 (2017).

¹Supported by AFOSR: FA9550-19-1-0099

Francois Anderegg University of California, San Diego

Date submitted: 02 Jul 2019

Electronic form version 1.4