Topanga: A Modern Code for E3 Simulations

D. J. LARSON, M. A. BELYAEV, B. I. COHEN, Lawrence Livermore Natl Lab, V. A. THOMAS, Los Alamos Natl Lab — We are developing the Topanga code for simulating the generation and propagation of the E3 electromagnetic pulse. The E3 component has a long pulse, lasting tens to hundreds of seconds. It is caused by a nuclear detonation’s temporary distortion of the Earth’s magnetic field. E3 EMP has similarities to a geomagnetic storm caused by a solar flare and can produce geomagnetically induced currents in long electrical conductors, damaging components such as power line transformers. Our code’s attributes include the following: spherical geometry for simplified boundary conditions and computational efficiency; couples a hybrid plasma model (fluid electrons and neutrals, particle ions, Ohm’s law, and reduced Maxwell’s equations) to a finite-difference time-domain electromagnetic solver (FDTD-EM); uses the IGRF magnetic field model, neutral atmosphere profiles from the US Standard Atmosphere or the NRL MSISE model, ionosphere profiles from the International Reference Ionosphere model; has ion-neutral, electron-ion, electron-neutral collisions; uses a fluid algorithm for motion of the neutral atmosphere; and has limited atmospheric chemistry. An overview of the code and simulation examples with some comparison to experimental data will be presented.

1This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

D. J. Larson
Lawrence Livermore Natl Lab

Date submitted: 02 Jul 2019
Electronic form version 1.4