Main-ion thermal transport and poloidal rotation in the H-mode pedestal SHAUN HASKEY, BRIAN GRIERSON, PPPL, COLIN CHRYSTAL, GA, ARASH ASHOURVAN, DEVON BATTAGLIA, TIMOTHY STOLTZFUS-DUECK, PPPL, EMILY BELLI, GA, LOTHAR SCHMITZ, UCLA — Measurements in DIII-D of the main-ions (D+) show that the ion thermal diffusivity (χ_i) is approximately neoclassical (NC) in the H-mode pedestal, whereas the poloidal rotation ($V\theta$) is significantly larger than predicted by NC theory. D+ temperatures (T_i) can be half the value of the standard impurity measurements (T_{imp}) in the steep gradient region of the pedestal on DIII-D. These new measurements greatly improve the accuracy of the electron and ion heat flux (Q_i) calculations, resolving historical issues such as negative Q_i, which could occur when the ion-electron power exchange was overestimated using T_{imp}. The experimental power balance χ_i is approximately at the NC level in an ITER baseline shot and will be presented across a range of collisionalities and compared with modeling using NCLASS, NEO, and XGC0. NC ion thermal transport suggests that an MHD-like mode (i.e KBM), which would be expected to drive transport in all channels including ion thermal, is not the dominant mechanism for transport in the pedestal.

Shaun Haskey
PPPL

Date submitted: 02 Jul 2019
Electronic form version 1.4