Electric Fields of the Sun and Solar Wind1 C. FRED DRISCOLL, University of California, San Diego — A simple model of solar electric fields explains the solar wind energetics and coronal ”heating”, invoking only gravito-electric and photo-electric forces. In the (collisional) solar interior, gravity necessarily generates a radial electric field \(eE = (-1/2)m_pg \), so protons are 50\% levitated. At the surface, this gives \(eE(R_s) = 1.4eV/Mm \) from displaced charge \(Q(R_s) = -75.Coul. \) In the (weakly collisional) outer photosphere/corona, electron scattering of the photon energy flux \(G_E \) gives \(eE = (G_E/c) \sigma_{\gamma e} \). An estimated average photon-electron cross-section \(\sigma_{\gamma e} = 3x10^{-24}m^2 \) (typical of e-\(/p^+ \) and e-\(/H \) correlations) gives \(eE = (4.eV/Mm) (r/R_s)^{-2} \), sufficient to generate the observed solar wind: protons are accelerated out of the 2.keV gravity well and up to 1.3keV kinetic energy within several \(R_s \), with total particle energy flux of \(G_E/10^6 \). This coherent proton/electron flow is the K-Corona, obviating the T=100eV hydrostatic model (Van deHulst, 1950). Filamentation (1.Mm\(^2\)) of the flow arises from the convection /recombination (“roiling”) dynamics of surface granulations, with local electric fields generating strong currents and local magnetic fields. Statistical charge fluctuations, current filamentation, and neutral gas drag on the persistent proton/electron flow produces the pervasive fluctuating magnetic fields observed by spacecraft.

1Supported by AFOSR grant FA9550-19-1-0099

C. Fred Driscoll
University of California, San Diego

Date submitted: 02 Jul 2019

Electronic form version 1.4