Abstract Submitted for the DPP19 Meeting of The American Physical Society

Stochastic acceleration by the ion-cyclotron instability in a growing magnetic field¹ FRANCISCO LEY, University of Wisconsin - Madison, MARIO RIQUELME, Universidad de Chile, LORENZO SIRONI, Columbia University, DANIEL VERSCHAREN, University College London, ASTOR SANDOVAL, Pontificia Universidad Catlica de Chile — Using 1D and 2D particle-in-cell (PIC) simulations of a plasma with a growing magnetic field \vec{B} , we show that ions can be stochastically accelerated by the ion-cyclotron (IC) instability. As \vec{B} grows, an ion pressure anisotropy $p_{\perp,i} > p_{||,i}$ arises, due to the adiabatic invariance of the ion magnetic moment $(p_{\parallel,i})$ and $p_{\perp,i}$ are the ion pressures parallel and perpendicular to \vec{B}). When initially $\beta_i = 0.5$ ($\beta_i \equiv 8\pi p_i/|\vec{B}|^2$, where p_i is the ion isotropic pressure), the pressure anisotropy is limited mainly by inelastic pitch-angle scattering provided by the IC instability, which in turn produces a non-thermal tail in the ion energy spectrum. After \vec{B} is amplified by a factor ~ 2.7, this tail can be approximated as a power-law of index ~ 3.4 plus two non-thermal bumps, and accounts for 2-3%of the ions and $\sim 18\%$ of their kinetic energy. Although we focus on cases where \vec{B} is amplified by plasma shear, we check that the acceleration occurs similarly if Bgrows due to plasma compression. Our results are valid in sub-relativistic regimes where the ion thermal energy is $\sim 10\%$ of the ion rest mass energy. This mechanism can be relevant in low-luminosity accretion disks

¹F.L. acknowledges support from the NSF grant NST AST-1616037

Francisco Ley University of Wisconsin - Madison

Date submitted: 02 Jul 2019

Electronic form version 1.4