General Relativistic Particle-In-Cell Simulations of Pair Producing Gaps in Black Hole Magnetospheres1 YAJIE YUAN, YURAN CHEN, Princeton University — In some low-luminosity accreting supermassive black hole systems, the supply of plasma in the jet funnel region can be a problem. It is believed that a local region with unscreened electric field can exist in the black hole magnetosphere, accelerating particles and producing high energy gamma-rays that can create e^\pm pairs. We carry out time-dependent, self-consistent, 1D general relativistic PIC simulations of this process, including inverse Compton scattering, photon tracking, and $\gamma\gamma$ pair production. We find a highly time-dependent solution where a macroscopic gap opens quasi-periodically to create e^\pm pairs and high energy radiation. We discuss possible implications for sources like M87 and Sgr A*, in particular the variable high energy emission from particles accelerated in the gap.

1YY acknowledges support from the Lyman Spitzer, Jr. Postdoctoral Fellowship awarded by the Department of Astrophysical Sciences at Princeton University. AC acknowledges support from NASA grant NNX15AM30G.

Yajie Yuan
Princeton University

Date submitted: 03 Jul 2019

Electronic form version 1.4