Abstract Submitted
for the DPP19 Meeting of
The American Physical Society

The Wide Emission Spectral (WiSE) Diagnostic on DIII-D
ADAM MCLEAN, Lawrence Livermore Natl Lab, TYLER ABRAMS, General Atomics, STEVE ALLEN, LLNL, DAVID AYALA, General Atomics, IGOR BYKOV, UCSD, RON ELLIS, LLNL, JIM KULCHAR, General Atomics, CHARLIE LASNIER, LLNL, DAVID PACE, General Atomics, CAMERON SAMUELL, LLNL, AARON SNYDER, General Atomics, KATRINA TEO, University of Washington, DIII-D TEAM — The Wide Spectral Emission (WiSE) diagnostic is a set of 10 absolute intensity calibrated, moderate spectral and temporal resolution spectrometers co-viewing vertically through the plasma being implemented on the DIII-D fusion device for study of neutral, ions, and molecules. Working together with existing extreme ultraviolet (EUV) and vacuum ultraviolet (VUV) diagnostics, this system provides a spectral ‘footprint’ of a tokamak plasma from 185 nm up through 5000 nm, all along a coincident line-of-sight, spanning the deep ultraviolet (DUV), ultraviolet (UV), visible (VIS), near infrared (NIR), short-wavelength infrared (SWIR) and medium wavelength infrared (MWIR) bands. Light from the plasma passes through a UV-grade sapphire viewport, then is collected with a fused silica-sapphire triplet lens and is transmitted from the machine to up to 10 separate instruments using a multi-pronged fiber bundle. Each spectrometer is capable of 0.5-4.5 kHz operation and is paired with a dedicated compact PC for operation and data acquisition. Details of design choices for the WiSE diagnostic will be presented, with implications for study of plasma parameters, impurity content, line-ratios, radiated power, and transients, along with beneficial implications for boundary code validation in DIII-D.

1Work supported by US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-FG02-07ER54917, LLNL LDRD project 17-ERD-020

Adam McLean
Lawrence Livermore Natl Lab

Date submitted: 03 Jul 2019

Electronic form version 1.4