Abstract Submitted for the DPP19 Meeting of The American Physical Society

Order unity reconnection rate scaling during anti-parallel magnetic reconnection on TREX¹ JOSEPH OLSON, JAN EGEDAL, SAM GREESS, ALEX MILLET-AYALA, RACHEL MYERS, CARY FOREST, University of Wisconsin - Madison, WIPPL TEAM — The Terrestrial Reconnection Experiment (TREX) is a device optimized to study the role of kinetic dynamics during collisionless magnetic reconnection². In a recent experimental run consisting of ~ 900 shots while varying certain experimental parameters we measured the reconnection rate using the Cassak-Shay scaling for asymmetric anti-parallel reconnection³. In this study, we observe that the absolute reconnection rate E_{rec} is set by the applied drive voltage while being insensitive to the applied background field, ion species, or plasma density. However, for all epxerimental configurations the observed relative reconnection rate is $E_{rec}/(V_A B_{rec}) \sim 1$ instead of the expected rate of $E_{rec}/(V_A B_{rec}) \sim 0.1$. These experiments suggest that the reconnecting magnetic field self-regulates to match the externally applied drive in order to provide a selfconsistent reconnection rate. This has important implications for determining the parameters of any given reconnection experiment while also challenging the ubiquity of the 0.1 rate scaling for fast magnetic reconnection.

³Cassak, P.A., and Shay, M.A., Phys. of Plasmas, **14**, 102114 (2007).

Joseph Olson University of Wisconsin - Madison

Date submitted: 03 Jul 2019 Electronic form version 1.4

¹NASA award 80NSSC18K1231 and DOE support for the WiPPL User Facility ²Olson, J., et al., Phys. Rev. Letters, **116**, 255001 (2016).