Order unity reconnection rate scaling during anti-parallel magnetic reconnection on TREX1 JOSEPH OLSON, JAN EGEDAL, SAM GREESS, ALEX MILLET-AAYALA, RACHEL MYERS, CARY FOREST, University of Wisconsin - Madison, WIPPL TEAM — The Terrestrial Reconnection Experiment (TREX) is a device optimized to study the role of kinetic dynamics during collisionless magnetic reconnection2. In a recent experimental run consisting of ~ 900 shots while varying certain experimental parameters we measured the reconnection rate using the Cassak-Shay scaling for asymmetric anti-parallel reconnection3. In this study, we observe that the absolute reconnection rate E_{rec} is set by the applied drive voltage while being insensitive to the applied background field, ion species, or plasma density. However, for all experimental configurations the observed relative reconnection rate is $E_{\text{rec}}/(V_A B_{\text{rec}}) \sim 1$ instead of the expected rate of $E_{\text{rec}}/(V_A B_{\text{rec}}) \sim 0.1$. These experiments suggest that the reconnecting magnetic field self-regulates to match the externally applied drive in order to provide a self-consistent reconnection rate. This has important implications for determining the parameters of any given reconnection experiment while also challenging the ubiquity of the 0.1 rate scaling for fast magnetic reconnection.

1NASA award 80NSSC18K1231 and DOE support for the WiPPL User Facility