Abstract Submitted
for the DPP19 Meeting of
The American Physical Society

Total-f gyrokinetic edge physics from XGC in realistic diverted geometry. C.S. CHANG, Princeton Plasma Physics Laboratory and the SciDAC HBPS Team — Tokamak edge plasma is in a non-Maxwellian state, dominated by multiscale multi-physics kinetic dynamics. Pedestal has steep gradient with its width comparable to the ion orbit width. Neoclassical, micro-turbulence, MHD/fluid type long wavelength modes, and neutral particle physics are all coupled together in complicated geometry that includes divertor and magnetic X-point. The collisionality changes from banana regime at the pedestal top to highly collisional regime in scrape-off layer. Impurity particles are also important players. We will present the current status of the edge gyrokinetic solutions from XGC in the present tokamaks and the future ITER plasmas: including the L-H bifurcation dynamics, divertor heat-flux width, neutral particle effect on edge turbulence, RMP physics, electromagnetic effect, importance of the X-point orbit loss physics, pedestal shape, toroidal rotation source at edge, blob physics, etc. We will also present the future plans.

1This project is funded by SciDAC-4, FES base program and ECP. Computational resources at OLCF, ALCF and NERSC are provided through INCITE and ERCAP programs.

C.S. Chang
Princeton Plasma Physics Laboratory

Date submitted: 03 Jul 2019

Electronic form version 1.4