Hard x-ray source enhancement via tailored plasma interaction

BRENT BLUE, PATRICK POOLE, RUSS BENJAMIN, ROBERT KIRKWOOD, SCOTT WILKS, MARK MAY, KLAUS WIDMANN, Lawrence Livermore National Laboratory — A high fluence source of hard x-rays (30+ keV) is desired for extreme radiation effects testing but currently cannot be produced via existing laser-driven K-alpha or pulsed-power bremsstrahlung capabilities. An alternative source under development enhances typically undesired laser-plasma instabilities to generate hot electrons that convert to bremsstrahlung x-ray emission in high-Z target walls. Experiments on Omega and NIF have been performed varying hohlraum plasma conditions to strengthen and enhance plasma waves, most recently using novel foams with density gradients to achieve a 4x increase in hard x-ray emission over single-density counterparts (which themselves emitted 10x greater hard x-rays than a typical target). Further results utilizing solid density structure within the hohlraum preferentially boosts emission of the desired 50-70 keV x-ray spectral range. These experimental results will be discussed along with corroborating simulations that allow extrapolation to ideal conditions on NIF.

1This work was performed under the auspices of the US DoE by LLNL under Contract No. DE-AC52-07NA27344.