Abstract Submitted for the DPP19 Meeting of The American Physical Society

Transport Analysis and Turbulent Ion Fluctuation Measurements with UF-CHERS at T_e/T_i ~1 in DIII-D¹ DINH TRUONG, GEORGE MC-KEE, ZHENG YAN, University of Wisconsin - Madison, CHOONGKI SUNG, TERRY RHODES, UCLA, STERLING SMITH, COLIN CHRYSTAL, General Atomics, SHAUN HASKEY, PPPL, GARY STAEBLER, General Atomics, RAY-MOND FONCK, University of Wisconsin - Madison, DIII-D TEAM — Radial profiles of multi-field fluctuation measurements (n_C, T_i, V_{tor}) were obtained with the Ultra Fast Charge Exchange Recombination Spectroscopy (UF-CHERS) diagnostic in a DIII-D experiment studying L-mode turbulent transport at near-unity T_e/T_i ratio. For a 10-20% increase in T_e/T_i using electron cyclotron heating, analysis of UF-CHERS measurements revealed a radially varying increase in normalized T_i fluctuations of $^{-1-3\%}$ of the equilibrium value, a corresponding decrease in V_{tor} fluctuations, and little change in $n_{\rm C}$ fluctuations. The same trend is also observed at increased density/collisionality. ONETWO transport analysis found increased electron and ion energy transport with larger $T_{\rm e}/T_{\rm i}$, consistent with the measured increase in T_e and T_i fluctuations. TGLF analysis showed increased growth rate for the most dominant modes at higher T_e/T_i over the wavenumber range (0.1 \leq ≤ 10) encompassing UF-CHERS' sensitivity. TGLF also calculated increased $k_{\theta} \rho_s$ T_i fluctuations at higher T_e/T_i . Further comparisons between experimentally inferred transport, multifield turbulence measurements, and transport models will be presented.

¹Work supported by US DOE under DE-FG02-08ER54999, DE-FC02-04ER54698, and NSF GRFP grant DGE-1256259.

Dinh Truong University of Wisconsin - Madison

Date submitted: 03 Jul 2019

Electronic form version 1.4