Experimental Program to Study Centrifugal Rotation in Highly Magnetized Hydrogen Plasmas and in Dusty Plasmas

C. A. ROMEROTALAMAS, N. J. ESCHBACH, J. N. STEFANCIK, K. N. FROST, J. M. DRUMMOND, A. J. CHEN, B. TSAO, University of Maryland, Baltimore County — Experimental plans and preliminary diagnostic results for a new high-field electromagnet facility under construction at UMBC are presented. The magnet, called Adjustable Long Pulse High-Field Apparatus (ALPHA), is a Bitter-type electromagnet designed to deliver up to 10-T in a 15-cm bore for more than 10 seconds. ALPHA is being constructed to accommodate two magnetic configurations: i) continuous stacking, which will allow for the highest steady state magnetic field for dusty plasma experiments; ii) irregular stacking, which will allow for a mirror field configuration to study the Critical Ionization Velocity (CIV) in plasmas with imposed E x B rotation (where E is the radial electric field, and B the axial magnetic field). The two configurations will use a cylindrical glass chamber, but with different inner electrode arrangements and diagnostics. The dusty plasma configuration will include a dust dispenser with high reproducibility, a dust collector to retrieve samples between experiments while keeping high vacuum, and periscopes for dust imaging during experiments. The CIV configuration will include a center conductor and a metal liner to impose an E-field through an external high voltage capacitor bank, and periscopes for plasma spectroscopy.

1Work supported by the AFOSR Grant No. FA9550-19-1-0071. Undergraduate students supported by the Maryland Space Grant Consortium.

Carlos Romero-Talamas
University of Maryland, Baltimore County

Date submitted: 03 Jul 2019
Electronic form version 1.4