Experimental Validation of Dense Plasma Transport Models using the Z-Machine 1
KRISTIAN BECKWITH, PATRICK KNAPP, THOMAS MATTSSON, KYLE COCHRANE, LUCAS STANEK, Sandia National Laboratories, CLAIRE KOPENHAFER, MICHAEL MURILLO, Michigan State University, JEFFREY HAACK, Los Alamos National Laboratory — Mixing of cold, higher-Z elements into the fuel region of an inertial confinement fusion target spoils the fusion burn efficiency. Recently, there has been a surge in the development of dense plasma transport modeling and the associated transport coefficients; however, experimental validation remains in its infancy. To address this gap, Sandia National Laboratories is developing a new experimental platform at the Z-facility to investigate plasma transport in dense plasmas that span the entire warm dense matter regime. This platform is being developed to measure species transport across a V/CH interface. In order to interpret measurements made using this experimental platform, modeling tools that incorporate transport effects in strongly coupled plasmas are required. Our team have utilized new advances in multi-species kinetic theory, collision models applicable to strongly coupled plasmas and modeling of degenerate electron plasmas to develop such a capability. The resulting kinetic transport code has been applied, along with state-of-the-art radiation hydrodynamic codes, to model the experiments. Results from this modeling effort highlight the importance of strong electric fields in driving interfacial mixing.

1SNL is managed and operated by NTESS under DOE NNSA contract DE-NA0003525. SAND2019-7120 A

Kristian Beckwith
Sandia National Laboratories

Date submitted: 03 Jul 2019

Electronic form version 1.4