Magneto Rayleigh-Taylor instability growth in magnetically driven cylindrical liners

1 DAVID YAGER-ELORRIAGA, DANIEL RUIZ, Sandia National Laboratories, RYAN MCBRIDE, University of Michigan, PATRICK KNAPP, MATTHEW GOMEZ, THOMAS AWE, ROGER VESEY, DANIEL SINARS, Sandia National Laboratories — The magneto Rayleigh-Taylor (MRT) instability grows in magnetically-driven inertial confinement fusion systems and can limit attainable fuel pressures and fusion yields. Here we analyze MRT in cylindrical liners imploded on the Z Machine at Sandia National Laboratories for a wide range of targets and machine configurations. We show that different trends in the MRT amplitude can be understood using the acceleration history applied to linear and non-linear theories for traditional Rayleigh-Taylor instability growth. The acceleration history is determined using a thin-shell implosion model, which allows us to relate the instability amplitude to driver and target properties, including the peak current, risetime and the initial target radius and aspect ratio.

1Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energys Nuclear Security Administration under contract DE-NA0003525.