Abstract Submitted for the DPP20 Meeting of The American Physical Society

Plasma Performance and Operational Boundaries Without ELMs in DIII-D¹ CARLOS PAZ-SOLDAN, General Atomics - San Diego, THE DIII-D TEAM — A comprehensive database of stationary DIII-D plasmas without ELMs compares all no-ELM regime types found in DIII-D: RMP-ELM suppression, QHmode (incl. wide-ped), I-mode, EDA H-mode, regular L-mode, and negative triangularity L-mode (neg-D). Absolute plasma performance measured by Lawson product $(\langle p \rangle \tau_E)$ increases in all regimes with IaB and injected power. These abscissa are often limited by the ELM, not hardware. Normalizing $\langle p \rangle \tau_E$ to IaB, comparable performance is found for QH and RMP plasmas though the pedestal pressure $(p_{ped} \equiv 2p_{e,ped})$ is very different. p_{ped} in RMP plasmas is roughly constant, with the best performance found with a high core $\langle p \rangle$ fraction alongside high core rotation, suggestive of an ExB shear turbulence suppression mechanism. p_{ped} of QH plasmas is significantly higher than RMP, and QH performance does not correlate with core rotation. However, the best QH p_{ped} are found with high carbon fraction. Performance of neg-D is below RMP and QH, owing to lower achieved elongation, IaB, and resultant confinement. The QH, EDA, L, and neg-D scenarios have approached divertor-friendly high density conditions, though neg-D does so with highest core performance owing to its compatibility with both high power and density.

¹Work supported by US DOE under DE-FC02-04ER54698

Carlos Paz-Soldan General Atomics - San Diego

Date submitted: 23 Jun 2020 Electronic form version 1.4