Abstract Submitted
for the DPP20 Meeting of
The American Physical Society

Prediction of isotopic effects in neutral beam experiments in DIII-D1 ERIC BASS, University of California, San Diego, RONALD WALTZ, MICHAEL VAN ZEELAND, General Atomics — The TGLF-EP+Alpha1,2 model of energetic particle (EP) transport is used to predict the transport-limited profile of neutral beam injection (NBI) ions in DIII-D discharges with hydrogen isotopes with super-Alfvénic EPs. When NBI mass is reduced, increased Alfvén Mach number is destabilizing to Alfvén eigenmodes (AEs) but decreased slowing-down time is stabilizing. The TGLF-EP+Alpha critical gradient model3 treats both effects self-consistently. We consider two shear-reversed scenarios: and . Across beam powers, a hydrogen beam into a hydrogen plasma increases AE transport over the all-deuterium reference. Competing effects roughly cancel with a hydrogen beam into a deuterium plasma.1He Sheng and R. E. Waltz, Nucl. Fusion 56, 056004 (2016)2He Sheng, R.E. Waltz, and G.M. Staebler, Phys. Plasmas 24, 072305 (2017)3super 3R. E. Waltz and E. M. Bass, Nucl. Fusion 54, 104006 (2014)

1Work supported by U.S. Department of Energy under Grants DE-FG02-95ER54309 (theory), DE-FC02-08ER54977 (SciDAC-GSEP project), and DE-SC0018108 (SciDAC-ISEP project).

Eric Bass
University of California, San Diego

Date submitted: 01 Jul 2020

Electronic form version 1.4