Abstract Submitted for the DPP20 Meeting of The American Physical Society

Solar Wind Magnetic Fluctuations Diagnosing Local Reconnection Currents¹ CHARLES DRISCOLL, University of California, San Diego — The 20 years of ACE satellite measurements of B(t) at 1AU enable detailed spectral and dynamical analyses, here supplemented by radial dependencies from Ulysses and Mariner from 0.3 - 5 AU. 1) Variable-duration spectral analyses clearly show that there is no persistent magnetic "spiral" at 1AU, merely the statistical fluctuations of "random walk" dynamics. Similarly, spectral components B(f) above $f \cong 50 \mu \text{Hz}$ clearly show the \sqrt{N} scaling of random noise. 2) Pervasive dynamical "arc" events are observed on time-scales $10^{3} < \tau < 10^{5}$ sec, presumably related to spiky "switchbacks" observed by PSP at 0.1AU. The dynamics appears as $B\theta$ -Bz, Br-Bz, and Br-B θ temporal arcs, with occurrence rates differing by direction. The observed dynamics is closely modelled by finite-duration "pinched" +/- current filaments, representing charge non-neutrality of 10^{-5} of the e-/p+ flux over distances $d \cong 10^{3}$ Mm and times $\tau \cong 2000$ s. 3) The Br and B θ (but not Bz) spectral components at the solar rotation frequency f_{rot} are quite exceptional, varying between 0% and 30% (average 17%) of the total Brms² magnetic energy. In *only* these variable components (with differing radial dependencies) is there a Br-B θ anti-correlation, which is traditionally mis-interpreted as a persistent spiral. These f_{rot} components probably reflect z-currents, arising from θ -z-dependent electric potentials from exceedingly small differences in e-/p+ ejection from the rotating solar surface.

¹Supported in part by AFOSR grant FA-9550-19-0099

Charles Driscoll University of California, San Diego

Date submitted: 27 Jun 2020

Electronic form version 1.4