Abstract Submitted for the DPP20 Meeting of The American Physical Society

Investigation of lower hybrid wave polarization in $WEST^1$ G.M. WALLACE, S.G. BAEK, J.C. WRIGHT, MIT PSFC, N. BERTELLI, M. ONO, S. SHIRAIWA, PPPL, A. EKEDAHL, M. GONICHE, J. HILLAIRET, Y. PEYSSON, CEA IRFM, C.C. KLEPPER, C. LAU, E.H. MARTIN, ORNL — Theoretical studies identified the potential for k_{\perp} rotation to impact lower hybrid (LH) wave propagation and absorption, and recent experimental analysis showed consistency between experimental LH current drive observations and modeling including k_{\perp} rotation for Alcator C-Mod. Investigations on C-Mod indicate that rotation of k_{\perp} may be due to scattering of the LH waves from density fluctuations. Conventional ray-tracing of LH waves assumes k_{\perp} to be normal to the flux surface at the starting point of the ray. The DSELF diagnostic on WEST measures the LH wave electric field components (E_R, E_Z, E_{ϕ}) near the antenna via dynamic Stark effect spectroscopy, which then constrains the angle of k_{\perp} rotation used at the launch point of rays in the model $(\sim \arctan(E_Z/E_R))$. This rotation of k_{\perp} impacts the up/down-shifts of k_{\parallel} as well as the ray trajectory itself, leading to broader or more peaked absorption depending on the direction of rotation. Ray-tracing/Fokker-Planck simulations including k_{\perp} rotation for WEST are presented in this work and compared with experimental data.

¹Work supported by US DoE award SC0014264.

Gregory Wallace Massachusetts Institute of Technology MIT

Date submitted: 29 Jun 2020

Electronic form version 1.4