Characterization of T_e and n_e Profiles of Discharges Driven Purely by Helicity Injection in the Pegasus Toroidal Experiment1 G.M. BODNER, M.W. BONGARD, R.J. FONCK, M.D. NORNBERG, J.A. REUSCH, N.J. RICHNER, C. RODRIGUEZ SANCHEZ, C.E. SCHAEFER, University of Wisconsin-Madison — Understanding the electron confinement and transport in plasmas driven purely by local helicity injection (LHI) is critical to the demonstration of high-performance discharges. Given the proper operating conditions, purely LHI-driven discharges can feature peaked T_e profiles with $T_{e,0} \sim 150$ eV. Ohmic discharges in PEGASUS at the same field level, $B_T \sim 0.15$ T exhibit similar T_e profiles albeit with higher n_e. At lower levels of B_T, LHI discharges feature hollow T_e profiles that increase in $<T_e>$ as the effective loop voltage, V_{LHI}, is increased. The increase in $<T_e>$ scales with V_{LHI} rather than the injector electrode voltage, V_{inj}, contrary to predictions from open field line theory. The hollowing of the T_e profile is hypothesized to be a combination of low ηj^2 heating power due to the hollow current profile and low-Z impurity radiation losses. Approximations of Z_{eff} in LHI discharges from voltage balance assuming purely Spitzer and neoclassical resistivity are ~ 3 and ~ 1, respectively. Thomson scattering and magnetic probe measurements indicate a pressure-free region between the kinetic and magnetic boundaries, possibly indicative of separate Ohmic and stochastic confinement regions. Overall scaling of I_p with V_{LHI} appears to be consistent with linear Ohmic confinement scaling assuming auxiliary ion and electron heating from magnetic reconnection.

1Work supported by US DOE grants DE-SC0019008 and DE-SC0020402.