BELLA Petawatt Laser for Ultrahigh-Intensity High Energy Density Physics within LaserNetUS

KEI NAKAMURA, SVEN STEINKE, LIESELOTTE OBST-HUEBL, JIANHUI BIN, QING JI, ANTHONY J. GON-SALVES, STEPAN S. BULANOV, CAMERON G. R. GEDDES, CARL B. SCHROEDER, ERIC ESAREY, THOMAS SCHENKEL, Lawrence Berkeley National Laboratory — In this presentation, we will report on the status of HEDP at the BELLA petawatt facility with a large laser spot beamline ($f\lambda65$, \(~10^{19} \text{W/cm}^2\)). Based on accelerated ion beams with a strongly reduced divergence and increased charge, we built an all-plasma-based beamline for controlled material processing and radiobiological studies. We will give an outlook on science enabled by a short-focal length ($f\lambda2.5$) laser beamline that is currently under construction. The new short-focal length beamline will be equipped with a re-collimating double-plasma mirror to study laser-plasma interactions at the highest temporal contrast and intensities >10^{21} \text{W/cm}^2 with a repetition rate up to 1 Hz, enabling, e.g., ion acceleration experiments with energies at the 100 MeV level. The BELLA center is part of LaserNetUS providing access to domestic and international users.

The work is supported by the U.S. Department of Energy Office of Science, under Contract No. DE-AC02-05CH11231 and by LaserNetUS (https://www.lasernetus.org/).

Sven Steinke
Lawrence Berkeley National Laboratory

Date submitted: 26 Oct 2020
Electronic form version 1.4