Magnetic Reconnection in Highly-Extended Current Sheets at the NIF

D.B. SCHAEFFER, Princeton University, Princeton Center for Heliophysics, W. FOX, PPPL, Princeton Center for Heliophysics, M. ROSENBERG, LLE, G. FIKSEL, U. Michigan, J. MATTEUCCI, Princeton University, Princeton Center for Heliophysics, H.-S. PARK, LLNL, A.F. BOTT, K.V. LEZHNIN, Princeton University, A. BHATTACHARJEE, Princeton University, Princeton Center for Heliophysics, D. KALANTAR, B.A. REMINGTON, LLNL, D. UZDENSKY, U. Colorado, C.K. LI, F.H. SÉGUIN, MIT, S.X. HU, LLE — We present results from experiments at the National Ignition Facility to study reconnection in large and highly-extended current sheets. Two highly-elongated plasma plumes were produced by tiling two rows of lasers, with magnetic fields generated in each plume by the Biermann battery effect. X-ray measurements provided estimates of local electron temperature and density scale length, which were also used to benchmark simulations. Detailed magnetic field observations, obtained from proton radiography using a DHe3 capsule implosion, reveal reconnection occurring in an extended, quasi-1D current sheet with large aspect ratio ~100. The 1-D geometry allowed a rigorous and unique reconstruction of the magnetic field, which showed a reconnection current sheet that thinned down to a half-width close to the electron gyro-scale. Despite the large aspect ratio, a large fraction of the magnetic flux reconnected, suggesting fast reconnection supported by the non-gyrotropic electron pressure tensor.

Supported by DOE FES, NNSA, and NIF Discovery Science

Derek Schaeffer
Princeton University

Date submitted: 29 Jun 2020

Electronic form version 1.4