Theory, Simulations, and Experiments on Magnetically Insulated Line Oscillator (MILO) at the University of Michigan

DREW PACKARD, YY LAU, CHRIS SWENSON, NICHOLAS JORDAN, BRENDAN SPORER, ROMAN SHAPOVALOV, RYAN MCBRIDE, RONALD GILGENBACH, Univ of Michigan - Ann Arbor, PLASMA, PULSED POWER, AND MICROWAVE LABORATORY TEAM — A fundamental theoretical study of Brillouin flow has been applied to the design of a magnetically insulated line oscillator (MILO) for operation on the Michigan Electron Long Beam Accelerator (MELBA). MELBA applies -300 to -500 kV and up to 10’s of kA for 0.3-1.0 μs. Simulations in CST-Particle Studio have been used to corroborate the theoretical predictions, and preliminary experiments on MELBA will be discussed. CST-PS has also been applied to gain understanding of a GW-class MILO for which experiments are planned to take place at UM [1]. [1] Packard et al, “HFSS and CST Simulations of a GW-Class MILO”, IEEE T-PS, vol. 48, 1894, (2020).

This work was supported by the U.S. Office of Naval Research through the Counter Directed Energy Weapons Program under Grants N000014-19-1-2262 and N00014-18-1-2499.