Abstract Submitted for the DPP20 Meeting of The American Physical Society

Sources of Ion Acoustic Wave Feature Broadening in the Thomson Scattering Spectrum of Gas-Puff Z-Pinches¹ SOPHIA ROCCO, E. SANDER LAVINE, Cornell University, JACOB BANASEK, UC San Diego, WILLIAM POTTER, DAVID HAMMER, Cornell University — Ion acoustic wave (IAW) feature broadening in collective Thomson scattering in neon gas-puff z-pinch plasmas is investigated on the COBRA pulsed power generator (rise time 240 ns to 0.9 MA peak current). A 526.5 nm, 10 J, 2.3 ns Thomson scattering diagnostic laser enables probing of the plasma conditions with i 1 mm spatial and i 1 ns temporal resolution. Electron temperature and plasma flow velocity can be obtained routinely from IAW spectra, but the width of the IAW peaks depends on both ion temperature, T_i , and on fluid velocity distributions within the scattering volume. In some cases, electron temperature (T_e) and density (n_e) can be obtained from the high-frequency electron plasma wave spectral feature (EPW). The width of the EPW depends on T_e , but is also affected by fluctuations in n_e . By comparing the values of T_e derived from both scattering features, it may be possible to detect the presence of small-scale, local density variations in the plasma. Past experiments show that including a spatial velocity distribution when fitting the IAW improves the fit quality for a range of times before stagnation; with density fluctuations included in the analysis, the presence of non-thermal, small scale hydromotion in the scattering volume may be indicated.

¹Research supported by LLNL subcontract B619181 and NNSA SSAP under DOE Cooperative Agreement DE-NA0003764.

Sophia Rocco Cornell University

Date submitted: 30 Jun 2020

Electronic form version 1.4